quinta-feira, 3 de dezembro de 2015

15/11 e 21/11






Meus dias para visitar a ilha e olhar o nosso jiral caia em domingos, 15 e 21 de novembro. 
Nos dias que fui, levei frutas e água limpa para colocar. 
 fui na parte da manhã. Quando estava trocando a água, pessoas passaram na hora e acharam a ideia muito legal, algumas pessoas até disseram que iriam trocar a aguá quando pudessem. O jiral foi uma atitude muito linda da parte de todos que ajudaram, e tenho certeza que muitos cidadãos se comoveram e vão ajudar a alimentar os animais da nossa ilha. 



VÍDEO AULA: SEGUNDA LEI DE MENDEL








A segunda lei de Mendel

A segregação independente de dois ou mais pares de genes

 
Além de estudar isoladamente diversas características fenotípicas da ervilha, Mendel estudou também a transmissão combinada de duas ou mais características. Em um de seus experimentos, por exemplo, foram considerados simultaneamente a cor da semente, que pode ser amarela ou verde, e a textura da casca da semente, que pode ser lisa ou rugosa.
Plantas originadas de sementes amarelas e lisas, ambos traços dominantes, foram cruzadas com plantas originadas de sementes verdes e rugosas, traços recessivos. Todas as sementes produzidas na geração F1 eram amarelas e lisas.
A geração F2, obtida pela autofecundação das plantas originadas das sementes de F1, era composta por quatro tipos de sementes:
9/16 amarelo-lisas
3/16 amarelo-rugosas
3/16 verde-lisas
1/16 verde-rugosas

Em proporções essas frações representam 9 amarelo-lisas: 3 amarelo-rugosas: 3 verde-lisas: 1 verde-rugosa.
Com base nesse e em outros experimentos, Mendel aventou a hipótese de que, na formação dos gametas, os alelos para a cor da semente (Vv) segregam-se independentemente dos alelos que condicionam a forma da semente (Rr). De acordo com isso, um gameta portador do alelo V pode conter tanto o alelo Rcomo o alelo r, com igual chance, e o mesmo ocorre com os gametas portadores do alelo v.
Uma planta duplo-heterozigota VvRr formaria, de acordo com a hipótese da segregação independente, quatro tipos de gameta em igual proporção: 1 VR: 1Vr: 1 vR: 1 vr.

A segunda lei de Mendel
Mendel concluiu que a segregação independente dos fatores para duas ou mais características era um princípio geral, constituindo uma segunda lei da herança. Assim, ele denominou esse princípio segunda lei da herança ou lei da segregação independente, posteriormente chamada segunda lei de Mendel: Os fatores para duas ou mais características segregam-se no híbrido, distribuindo-se independentemente para os gametas, onde se combinam ao acaso.

A proporção 9:3:3:1
Ao estudar a herança simultânea de diversos pares de características. Mendel sempre observou, em F2, a proporção fenotípica 9:3:3:1, conseqüência da segregação independente ocorrida no duplo-heterozigoto, que origina quatro tipos de gameta.

Segregação independente de 3 pares de alelos
Ao estudar 3 pares de características simultaneamente, Mendel verificou que a distribuição dos tipos de indivíduos em F2 seguia a proporção de 27: 9: 9: 9: 3: 3: 3: 1. Isso indica que os genes para as 3 características consideradas segregam-se independentemente nos indivíduos F1, originando 8 tipos de gametas.
Em um dos seus experimentos, Mendel considerou simultaneamente a cor (amarela ou verde), a textura da casca (lisa ou rugosa) e a cor da casca da semente (cinza ou branca).
O cruzamento entre uma planta originada de semente homozigota dominante para as três características (amarelo-liso-cinza) e uma planta originada de semente com traços recessivos (verde-rugosa-branca) produz apenas ervilhas com fenótipo dominante, amarelas, lisas e cinza. Esses indivíduos são heterozigotos para os três pares de genes (VvRrBb). A segregação independente desses três pares de alelos, nas plantas da geração F1, leva à formação de 8 tipos de gametas.
 
Os gametas produzidos pelas plantas F1 se combinam de 64 maneiras possíveis (8 tipos maternos X 8 tipos paternos), originando 8 tipos de fenótipos.

Determinando o número de tipos de gametas na segregação independente

Para determinar o número de tipos de gametas formados por um indivíduo, segundo a segregação independente, basta aplicar a expressão 2n, em que n representa o número de pares de alelos no genótipo que se encontram na condição heterozigota.

Obtendo a Proporção 9:3:3:1 sem Utilizar o Quadro de Cruzamentos
Genótipo
Valor de n
2n
Número de gametas
AA
0
20
1
Aa
1
21
2
AaBB
1
21
2
AaBb
2
22
4
AABbCCDd
2
22
4
AABbCcDd
3
23
8
AaBbCcDd
4
24
16
AaBbCcDdEe
5
25
32

A 2º lei de Mendel é um exemplo de aplicação direta da regra do E de probabilidade, permitindo chegar aos mesmos resultados sem a construção trabalhosa de quadro de cruzamentos. Vamos exemplificar, partindo do cruzamento entre suas plantas de ervilha duplo heterozigotas:
P: VvRr X VvRr
  • Consideremos, primeiro, o resultado do cruzamento das duas características isoladamente:
Vv X VvRr X Rr
3/4 sementes amarelas
3/4 sementes lisas
1/4 sementes verdes
1/4 sementes rugosas
  • Como desejamos considerar as duas características simultaneamente, vamos calcular a probabilidade de obtermos sementes amarelas e lisas, já que se trata de eventos independentes. Assim,
sementes amarelas              E              sementes lisas
                             
           3/4                      X                  3/4                      =     9/16
  • E a probabilidade de obtermos sementes amarelas e rugosas:
sementes amarelas               E              sementes rugosas
                 
           3/4                      X                   1/4                     =    3/16
  • Agora a probabilidade de obtermos sementes verdes e lisas:
sementes verdes                E              sementes lisas
                      
          1/4                     X                    3/4                     =   3/16
  • Finalmente, a probabilidade de nós obtermos sementes verdes e rugosas:
  sementes verdes               E              sementes rugosas
               
         1/4                      X                   1/4                    =   1/16

Utilizando a regra do E, chegamos ao mesmo resultado obtido na construção do quadro de cruzamentos com a vantagem da rapidez na obtenção da resposta.

quarta-feira, 19 de agosto de 2015

Gregor Mendel

 
 
 
Gregor Mendel nasceu em 1822, em Heinzendorf, na Áustria. Era filho de pequenos fazendeiros e, apesar de bom aluno, teve de superar dificuldades financeiras para conseguir estudar. Em 1843, ingressou como noviço no mosteiro de agostiniano da cidade de Brünn, hoje Brno, na atual República Tcheca. 

Após ter sido ordenado monge, em 1847, Mendel ingressou na Universidade de Viena, onde estudou matemática e ciências por dois anos. Ele queria ser professor de ciências naturais, mas foi mal sucedido nos exames.
De volta a Brünn, onde passou o resto da vida. Mendel continuou interessado em ciências. Fez estudos meteorológicos, estudou a vida das abelhas e cultivou plantas, tendo produzido novas variedades de maças e peras. Entre 1856 e 1865, realizou uma série de experimentos com ervilhas, com o objetivo de entender como as características hereditárias eram transmitidas de pais para filhos. 

Em 8 de março de 1865, Mendel apresentou um trabalho à Sociedade de História Natural de Brünn, no qual enunciava as suas leis de hereditariedade, deduzidas das experiências com as ervilhas. Publicado em 1866, com data de 1865, esse trabalho permaneu praticamente desconhecido do mundo científico até o início do século XX. Pelo que se sabe, poucos leram a publicação, e os que leram não conseguiram compreender sua enorme importância para a Biologia. As leis de Mendel foram redescobertas apenas em 1900, por três pesquisadores que trabalhavam independentemente. 

Mendel morreu em Brünn, em 1884. Os últimos anos de sua vida foram amargos e cheios de desapontamento. Os trabalhos administrativos do mosteiro o impediam de se dedicar exclusivamente à ciência, e o monge se sentia frustrado por não ter obtido qualquer reconhecimento público pela sua importante descoberta. Hoje Mendel é tido como uma das figuras mais importantes no mundo científico, sendo considerado o “pai” da Genética. No mosteiro onde viveu existe um monumento em sua homenagem, e os jardins onde foram realizados os célebres experimentos com ervilhas até hoje são conservados.

 

Os experimentos de Mendel

Experiências com cruzamento de plantas


A ervilha é uma planta herbácea leguminosa que pertence ao mesmo grupo do feijão e da soja. Na reprodução, surgem vagens contendo sementes, as ervilhas. Sua escolha como material de experiência não foi casual: uma planta fácil de cultivar, de ciclo reprodutivo curto e que produz muitas sementes. Desde os tempos de Mendel existiam muitas variedades disponíveis, dotadas de características de fácil comparação. Por exemplo, a variedade que flores púrpuras podia ser comparada com a que produzia flores brancas; a que produzia sementes lisas poderia ser comparada cm a que produzia sementes rugosas, e assim por diante. Outra vantagem dessas plantas é que estame e pistilo, os componentes envolvidos na reprodução sexuada do vegetal, ficam encerrados no interior da mesma flor, protegidas pelas pétalas. Isso favorece a autopolinização e, por extensão, a autofecundação, formando descendentes com as mesmas características das plantas genitoras.

A partir da autopolinização, Mendel produziu e separou diversas linhagens puras de ervilhas para as características que ele pretendia estudar. Por exemplo, para cor de flor, plantas de flores de cor de púrpura sempre produziam como descendentes plantas de flores púrpuras, o mesmo ocorrendo com o cruzamento de plantas cujas flores eram brancas. Mendel estudou sete características nas plantas de ervilhas: cor da flor, posição da flor no caule, cor da semente, aspecto externo da semente, forma da vagem, cor da vagem e altura da planta.

Genética

Genética

 

 A Genética  é a área da Ciência, que investiga a constituição dos genes, como se processa a hereditariedade, de que forma os atributos orgânicos são passados de uma geração para a outra, que distúrbios físicos podem estar presentes no mapa genético do organismo de cada um.
A hereditariedade é a herança genética que recebemos de nossos antepassados, seja ela, características físicas ou, até mesmo, doenças. Daí a explicação de filhos se parecerem com o pai, com a mãe, avô, avó, tio, tia e até parentes mais distantes.


 
 
 
Principais distúrbios e alterações de origem genética:

- Síndrome de down (acidente genético), talassemia (desordem hereditária), albinismo (distúrbio congênito), daltonismo (distúrbio genético), Síndrome de Turner (anomalia cromossômica), etc.

O que é o genoma humano

Podemos dizer que genoma é o código genético do ser humano, ou seja, o conjunto dos genes humanos. No material genético podemos encontrar todas as informações para o desenvolvimento e funcionamento do organismo do ser humano. Este código genético está presente em cada uma das nossas células. O genoma humano apresenta-se por 23 pares de cromossomos que contem interiormente os genes. Todas as informações são codificadas pelo DNA, o ácido desoxirribonucléico. Este ácido, que tem um formato de dupla hélice, (veja figura do DNA acima) é formado por quatro bases que se juntam  aos pares: adenina com timina e citosina com guanima.

A utilidade do genoma humano

Através do mapeamento genético do genoma humano será possível, muito em breve, descobrir a causa de muitas doenças.  Muitos remédios e vacinas poderão ser desenvolvidos a partir das informações obtidas pelas pesquisas genéticas. Descobrindo a causa de várias doenças, o ser humano poderá adotar medidas de prevenção.

Através de pesquisas genéticas e exames, já é possível detectar se um ser humano tem predisposição para sofrer de certas doenças ou se um embrião herdou doenças graves. Em breve, quando forem descobertas as funções de todos os genes humanos, outros benefícios virão.

Principais áreas da Genética

- Genética Molecular - enfatiza ao estudo das estruturas e funções dos genes em nível molecular.

- Genética Clássica - utiliza procedimentos e técnicas da Genética antes da chegada da Biologia Molecular.

- Genética de Populações - estuda  as mudanças que ocorrem nos alelos com as influências das forças evolutivas.

- Genética Ecológica - analisa e estuda a Genética levando em conta as interações dos organismos e destes com o meio ambiente.

- Genômica - estuda os padrões genéticos de determinadas espécies.

Embriologia e Tipos de óvulos

Embriologia

A embriologia é a ciência que trabalha a formação dos órgãos e sistemas de um animal, a partir de uma célula . Faz parte da biologia do desenvolvimento. O desenvolvimento embrionário dos animais inicia-se pela relação sexual, gerando o zigoto ou ovo, que passará por três fases sucessivamente: mórula, blástula e gástrula.

Tipos De Óvulos

Os ovos são classificados de acordo com a quantidade e distribuição do vitelo (reserva nutritiva), que garantem o desenvolvimento embrionário.

Óvulos oligolécitos

Apresentam uma quantidade pequena de vitelo, que está distribuída de maneira uniforme pelo citoplasma. Ocorre nos espongiários, celenterados, equinodermas, protocordados e mamíferos. 
 
 
Resultado de imagem para oligolecito

Óvulos heterolécitos

Apresenta uma quantidade média de vitelo que está concentrada abundantemente no pólo vegetativo. Ocorre nos platielmintes, moluscos, anelídeos e anfíbios. 
 
Resultado de imagem para megalecito
 

 Óvulos telolécitos completos ou megalécitos

Apresenta uma quantidade abundante de vitelo que ocupa praticamente todo o ovo, deixando o núcleo e o citoplasma numa pequena área do pólo animal, chamada cicatrícula ou disco germinativo.
Aparecem em cefalópodes, peixes, répteis e aves.
 
Resultado de imagem para heterolecitos
 

Óvulos centrolécitos

O ovo possui uma abundante reserva de vitelo na região central do ovo, em volta do núcleo. Ocorre nos artrópodes.
 
 Resultado de imagem para megalecito

Segmentação ou Clivagem

Segmentação ou Clivagem


Após ocorrer a fecundação, começa a fase de desenvolvimento do embrião.
As divisões mitóticas do zigoto são chamadas de clivagem, formando duas células-filhas, chamadas blastômero, que sofrem sucessivas divisões, formando a mórula, que contém de 12 a 16 blastômeros.

Segmentação holoblástica

Este tipo de segmentação ocorre em todo o ovo e pode ser subdividida em holoblástica igual, desigual e subigual. Normalmente ocorre em ovos isolécitos, heterolécitos e alécitos.

I - Holoblástica igual: Na terceira clivagem do zigoto são formados oito blastômeros de tamanhos iguais. Os mamíferos apresentam este tipo de segmentação.

II - Holoblástica desigual: Os oito blastômeros formados possuem tamanhos diferentes, os menores são chamados de micrômeros e os maiores de macrômeros. Anfíbios possuem este tipo de segmentação.


 


Segmentação meroblástica
 
Esta segmentação é subdividida de acordo com a diferença de distribuição de vitelo nos ovos.

III - Meroblástica discoidal: Ocorre em ovos telolécitos, mas apenas na região sem vitelo.
 
IV- Meroblástica superficial: Ocorre em ovos centrolécitos. As células embrionárias se localizam na região superficial do ovo.



terça-feira, 23 de junho de 2015

quarta-feira, 13 de maio de 2015

Sistema reprodutor feminino

SISTEMA REPRODUTOR FEMININO
O sistema reprodutor feminino é constituído por dois ovários, duas tubas uterinas (trompas de Falópio), um útero, uma vagina, uma vulva. Ele está localizado no interior da cavidade pélvica. A pelve constitui um marco ósseo forte que realiza uma função protetora.


vagina é um canal de 8 a 10 cm de comprimento, de paredes elásticas, que liga o colo do útero aos genitais externos. Contém de cada lado de sua abertura, porém internamente, duas glândulas denominadas glândulas de Bartholin,  que secretam um muco lubrificante.
A entrada da vagina é protegida por uma membrana circular - o hímen - que fecha parcialmente o orifício vulvo-vaginal e é quase sempre perfurado no centro, podendo ter formas diversas. Geralmente, essa membrana se rompe nas primeiras relações sexuais. 
A vagina é o local onde o pênis deposita os espermatozóides na relação sexual. Além de possibilitar a penetração do pênis, possibilita a expulsão da menstruação e, na hora do parto, a saída do bebê.
A genitália externa ou vulva é delimitada e protegida por duas pregas cutâneo-mucosas intensamente irrigadas e inervadas - os grandes lábios. Na mulher reprodutivamente madura, os grandes lábios são recobertos por pêlos pubianos. Mais internamente, outra prega cutâneo-mucosa envolve a abertura da vagina - os pequenos lábios - que protegem a abertura da uretra e da vagina. Na vulva também está o clitóris, formado por tecido esponjoso erétil, homólogo ao pênis do homem. 

Ovários: são as gônadas femininas. Produzem estrógeno e progesterona, hormônios sexuais femininos. No final do desenvolvimento embrionário de uma menina, ela já tem todas as células que irão transformar-se em gametas nos seus dois ovários. Estas células - os  ovócitos primários -  encontram-se dentro de estruturas denominadas folículos de Graaf  ou folículos ovarianos. A partir da adolescência, sob ação hormonal, os folículos ovarianos começam a crescer e a desenvolver. Os folículos em desenvolvimento secretam o hormônio estrógeno. Mensalmente, apenas um folículo geralmente completa o desenvolvimento e a maturação,  rompendo-se e liberando o ovócito secundário (gaemta feminino): fenômeno conhecido como ovulação. Após seu rompimento, a massa celular resultante transforma-se em corpo lúteo ou amarelo, que passa a secretar os hormônios progesterona e estrógeno.  Com o tempo, o corpo lúteo regride e converte-se em corpo albicans ou corpo branco, uma pequena cicatriz fibrosa que irá permanecer no ovário.
Tubas uterinas, ovidutos ou trompas de Falópio: são dois ductos que unem o ovário ao útero. Seu epitélio de revestimento é formados por células ciliadas. Os batimentos dos cílios microscópicos e os movimentos peristálticos das tubas uterinas impelem o gameta feminino até o útero.  
Útero: órgão oco situado na cavidade pélvica anteriormente à bexiga e posteriormente ao reto, de parede muscular espessa (miométrio) e com formato de pêra invertida.  É revestido internamente por um tecido vascularizado rico em glândulas - o endométrio. 


















Sistema reprodutor masculino

SISTEMA REPRODUTOR MASCULINO
O sistema reprodutor masculino é formado por:
  • Testículos ou gônadas
  • Vias espermáticas: epidídimo, canal deferente, uretra.
  • Pênis
  • Escroto
  • Glândulas anexas: próstata, vesículas seminais, glândulas bulbouretrais.


Testículos

Nos testículos ocorre a produção de espermatozóides e também a produção de testosterona (hormônio sexual masculino).

Epidídimo 

É no ducto epidídimo que ocorre a maturação dos espermatozóides, além disso, este ducto também armazena os espermatozóides e os conduzem ao ducto deferente através de movimentos peristálticos (contração muscular).

Ductos deferentes

Os ductos deferentes têm a função armazenar os espermatozóides e de transporta-los em direção à uretra, além disso, ela ainda é responsável por reabsorver aqueles espermatozóides que não foram expelidos.

Vesícula Seminal

As vesículas seminais são glândulas responsáveis por secretar um fluído que tem a função de neutralizar a acidez da uretra masculina e da vagina, para que, desta forma, os espermatozóides não sejam neutralizados.

Próstata

A próstata é uma glândula masculina de tamanho similar a uma bola de golfe. É através da próstata que é secretado um líquido leitoso que possui aproximadamente 25% de sêmen. 

Pênis

É através do pênis (uretra) que o sêmen é expelido. Além de servir de canal para ejaculação, é através deste órgão que a urina também é expelida.

Uretra

Canal condutor que, no aspecto da reprodução, possui a função de conduzir e espelir o esperma durante o processo de ejaculação.
























Poliembrionia e Partenogenese

POLIEMBRIONIA
Pode ocorrer em casos de animais ovíparos ou em partenogênese. Durante as divisões mitóticas, cada célula pode dar origem a um novo indivíduo. O resultado deste caso especial de reprodução é o nascimento de dois ou mais seres, muito semelhantes e, necessariamente, do mesmo sexo. Gêmeos univitelinos são formados por este processo. Seres humanos, tatus, cães, coelhos e alguns insetos são exemplos de espécies que este tipo reprodutivo pode ocorrer.

PARTENOGÊNESE:
Desenvolvimento do embrião a partir de óvulo não-fecundado. Geralmente, os indivíduos são haploides (zangões e escorpiões-amarelos), mas podem ser diploides quando não ocorre meiose ou quando o corpo polar se junta ao ovo (ex: algumas espécies de pulgões e de borboletas, respectivamente).
Quando são desenvolvidos apenas indivíduos machos, chamamos de partenogênese arrenótoca; quando são apenas fêmeas, falamos em partenogênese telítoca; e quando são de ambos os sexos, anfítoca.

Tipos de reprodução sexuada e assexuada

ASSEXUADA: também chamada de reprodução vegetativa, nesta os seres vivos possuem a capacidade de se reproduzirem por si só, sem a ajuda de outro da mesma espécie. Não há combinação gênica, já que não há contato entre dois da mesma espécie. Este tipo de reprodução possui vários meios. 

  • Divisão binária ou cissiparidade: nesta divisão, o organismo 1 se divide (meio a meio) e cada metade dele se regenera, formando assim dois descendentes.
  • Gemulação, gemiparidade ou brotamento: quando aparecem brotos ou gêmulas no organismo (na superfície mesmo) que virão a formar novos organismos, desprendendo-se ou não daquele que o originou.
  • Esporulação: os esporos (que são células reprodutoras assexuadas) são os responsáveis por originar novos organismos.



SEXUADA: nada mais é do que o contrário da reprodução assexuada. Existe a combinação gênica – já que esta reprodução abrange a fecundação ou fertilização (a forma mais comum de reprodução sexuada) – e por isso, é considerada mais importante no quesito evolutivo, já que permite a variabilidade dos seres vivos. É o meio de reprodução do ser humano, por isso somos uma raça extremamente diversificada. Apesar de parecer simples, também possui vários meios de ocorrência. 


  • Fecundação ou fertilização: forma mais comum de reprodução sexuada, consiste na fusão do gameta masculino com o feminino, formando o zigoto. Podendo ser externa ou interna, este meio de reprodução é o mais comum.
  • Partenogênese: quando um óvulo não é fecundado e a partir dele, ainda existe um desenvolvimento embrionário que posteriormente irá originar um novo indivíduo.